Fast least squares migration with a deblurring filter

نویسندگان

  • Naoshi Aoki
  • Gerard T. Schuster
  • Richard D. Jarrard
  • Michael S. Zhdanov
  • Marjorie A. Chan
  • David S. Chapman
چکیده

Least squares migration (LSM) is a linearized waveform inversion for estimating a subsurface reflectivity model that, relative to conventional migration, offers improved spatial resolution of migration images. The cost, however, is that LSM typically requires 10 or more iterations, which is about 20 times or more the CPU cost of conventional migration. To alleviate this expense, I present a deblurring filter that can be employed in either a regularization scheme or a preconditioning scheme to give acceptable LSM images with less than 1 3 the cost of the standard LSM method. My results in applying deblurred LSM (DLSM) to synthetic data and field data support this claim. In particular, a Marmousi2 model test showed that the data residual for preconditioned DLSM decreases rapidly in the first iteration, which is equivalent to 10 or more iterations of LSM. Empirical results suggest that regularized DLSM after 3 iterations is equivalent to about 10 iterations of LSM. Applying DLSM to 2-D marine data gives a higher resolution image compared to those from migration or LSM with 3 iterations. These results suggest that LSM combined with a deblurring filter allows LSM to be a fast and practical tool for improved imaging of complicated structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-squares Migration of Simultaneous Sources Data with a Deblurring Filter

We present the theory and numerical results for least-squares migration of traces generated by simultaneous sources. Numerical tests show that standard seismic data processing, such as stacking and migration, can effectively suppress some crosstalk associated with simultaneous sources data, and so can separate shot gathers from one another. In contrast, LSM can remove most of the noise from sim...

متن کامل

Acoustic Multi-source Waveform Inversion with Deblurring

The theory of preconditioned multi-source waveform inversion is presented where many shot gathers are simultaneously back-propagated to form the multisource gradient of the misfit function. Synthetic tests on 2D Marmousi model data show that multi-source waveform inversion using an encoded multi-source deblurring filter as a preconditioner can provide a good inverted model but with less computa...

متن کامل

Multi-source Waveform Inversion with Deblurring

The theory of preconditioned multi-source waveform inversion is presented where many shot gathers are simultaneously back-propagated to form the gradient of the misfit function. The implication is that, relative to standard waveform inversion, an order of magnitude increase in computational efficiency can be achieved by multi-source waveform inversion. INTRODUCTION Time-domain waveform inversio...

متن کامل

Block row recursive least squares migration

Recursive estimates of large systems of equations in the context of least squares fitting is a common practice in different fields of study. For example, recursive adaptive filtering is extensively used in signal processing and control applications. The necessity of solving least squares problem via recursive algorithms comes from the need of fast real-time signal processing strategies. Computa...

متن کامل

Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter

Component substitution (CS) and multiresolution analysis (MRA) based methods have been adopted in hyperspectral pansharpening. The major contribution of this paper is a novel CS-MRA hybrid framework based on intrinsic image decomposition and weighted least squares filter. First, the panchromatic (P) image is sharpened by the Gaussian-Laplacian enhancement algorithm to enhance the spatial detail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009